Package: missForest 1.5

Daniel J. Stekhoven

missForest: Nonparametric Missing Value Imputation using Random Forest

The function 'missForest' in this package is used to impute missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation. It can be run in parallel to save computation time.

Authors:Daniel J. Stekhoven <[email protected]>

missForest_1.5.tar.gz
missForest_1.5.zip(r-4.5)missForest_1.5.zip(r-4.4)missForest_1.5.zip(r-4.3)
missForest_1.5.tgz(r-4.4-any)missForest_1.5.tgz(r-4.3-any)
missForest_1.5.tar.gz(r-4.5-noble)missForest_1.5.tar.gz(r-4.4-noble)
missForest_1.5.tgz(r-4.4-emscripten)missForest_1.5.tgz(r-4.3-emscripten)
missForest.pdf |missForest.html
missForest/json (API)

# Install 'missForest' in R:
install.packages('missForest', repos = c('https://stekhoven.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/stekhoven/missforest/issues

On CRAN:

11.61 score 91 stars 30 packages 1.0k scripts 9.9k downloads 178 mentions 5 exports 8 dependencies

Last updated 1 years agofrom:5e5e26035e. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-winNOTENov 16 2024
R-4.5-linuxNOTENov 16 2024
R-4.4-winOKNov 16 2024
R-4.4-macOKNov 16 2024
R-4.3-winOKNov 16 2024
R-4.3-macOKNov 16 2024

Exports:missForestmixErrornrmseprodNAvarClass

Dependencies:codetoolsdigestdoRNGforeachiteratorsitertoolsrandomForestrngtools

missForest_1.5

Rendered frommissForest_1.5.Rnwusingutils::Sweaveon Nov 16 2024.

Last update: 2022-04-14
Started: 2022-04-14