Package: missForest 1.5
Daniel J. Stekhoven
missForest: Nonparametric Missing Value Imputation using Random Forest
The function 'missForest' in this package is used to impute missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation. It can be run in parallel to save computation time.
Authors:
missForest_1.5.tar.gz
missForest_1.5.zip(r-4.5)missForest_1.5.zip(r-4.4)missForest_1.5.zip(r-4.3)
missForest_1.5.tgz(r-4.4-any)missForest_1.5.tgz(r-4.3-any)
missForest_1.5.tar.gz(r-4.5-noble)missForest_1.5.tar.gz(r-4.4-noble)
missForest_1.5.tgz(r-4.4-emscripten)missForest_1.5.tgz(r-4.3-emscripten)
missForest.pdf |missForest.html✨
missForest/json (API)
# Install 'missForest' in R: |
install.packages('missForest', repos = c('https://stekhoven.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stekhoven/missforest/issues
Last updated 1 years agofrom:5e5e26035e. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win | NOTE | Nov 16 2024 |
R-4.5-linux | NOTE | Nov 16 2024 |
R-4.4-win | OK | Nov 16 2024 |
R-4.4-mac | OK | Nov 16 2024 |
R-4.3-win | OK | Nov 16 2024 |
R-4.3-mac | OK | Nov 16 2024 |
Exports:missForestmixErrornrmseprodNAvarClass
Dependencies:codetoolsdigestdoRNGforeachiteratorsitertoolsrandomForestrngtools
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Nonparametric Missing Value Imputation using Random Forest | missForest-package |
Nonparametric Missing Value Imputation using Random Forest | missForest |
Compute Imputation Error for Mixed-type Data | mixError |
Normalized Root Mean Squared Error | nrmse |
Introduce Missing Values Completely at Random | prodNA |
Extract Variable Types from a Dataframe | varClass |